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Abstract— An approach combining the SRAM-based FPGA 

static cross-section with the results of fault injection campaigns 

allows predicting the error rate of any implemented application. 

Experimental results issued from heavy ion tests are confronted 

to predictions in order to validate the proposed methodology. 

 
Index Terms— fault tolerance, fault injection, field 

programmable gate arrays, single event upsets, single event rates, 

accelerated testing, space applications,  

I. INTRODUCTION 

IELD Programmable Gate Arrays (FPGAs) are much 

appreciated by designers because they offer low cost, high 

performance, fast time to market and great flexibility for the 

design. Among the available technologies, SRAM-based 

FPGAs are well suited for space and avionic applications for 

their on-site reconfiguration [1]. Despite their attractive 

characteristics, designers are often reluctant to use SRAM-

based FPGAs for critical applications, as the mission profiles 

may include harsh environments in which the device is 

exposed, for instance, to ionizing radiation [2][3]. Single-

Event Effects (SEE) are a well-known threat for space 

systems, nowadays being also a concern for applications 

devoted to operate in the earth’s atmosphere even at sea level. 

The most probable consequences of impinging energetic 

particles on SRAM-based FPGAs are Single-Event Upsets 

(SEUs) and Multiple-Bit Upsets (MBUs) occurring either in 

the embedded design or in the configuration memory. Such 

faults occurring in the design are temporary and can be 

recovered by a Reset. However, faults induced in 

configuration memory are permanent and the only way to cope 

with them is to reconfigure the FPGA. Such faults may directly 

result in a “mutation” of the function implemented in the 

FPGA [4][5]. 
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Protection against SEUs in configuration memory must be 

taken into account by the designer [6]. Design level solutions, 

such as the well-known Triple Modular Redundancy (TMR) 

technique, are often adopted in order to build fault-tolerant 

architectures in SRAM-based FPGAs [7][8], but they always 

require finding a compromise between fault-tolerance and 

resource overhead or performance penalty. 

Radiation accelerated tests are mandatory to obtain the 

sensitivity of the target device by determining its static cross-

section curve. However, this figure significantly overestimates 

the sensitivity of a final application. In the case of complex 

circuits such as processors, previous researches [9] 

demonstrated that the dynamic cross-section of the final 

application can be accurately predicted combining the static 

cross-section with the results of fault injection campaigns in 

which the SEUs are emulated by a suitable approach 

(simulation, emulation, hardware/software fault injection….) 

whose choice depends mainly on the available circuit 

description. 

The researches presented in this paper were done in the 

context of a participation of TIMA Laboratory to the LWS-

SET (Living With a Star – Space Environment Testbeds) 

NASA program. The LWS project aims at studying the solar 

activity and the impact of its variations on the Earth and on 

life. The SET project is the element of LWS program that 

characterizes the space environment and its impact on 

integrated circuit and system reliability in space. The main 

goal of SET is to improve the engineering approach to 

accommodation and/or mitigation of the effects of solar 

variability on spacecraft design and operations. For this, the 

SET spacecraft provides several slots to embed experiments 

on the topic. 

TIMA was in charge to develop an application able to 

observe the behavior of a commercial SRAM-based FPGA and 

its application. When the project started the most advanced 

device was selected as a test vehicle: a Xilinx Virtex-II 1000. 

In terms of logical capacity, this FPGA is a mid-range product 

among the Virtex-II family. 

In this paper, a state-of-the-art approach devoted to predict 

the SEU error-rate will be applied to an application 

implemented on a SRAM-based FPGA. In section II the error 
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rate prediction method will be described. Fault injection 

campaigns were applied using an upgraded version of the 

THESIC (Testbed for Harsh Environment Studies on 

Integrated Circuits) platform developed at TIMA, so-called 

THESIC+. Details, experimental results and their 

confrontation with measures issued from heavy-ion test 

campaigns are summarized in section III. Finally, conclusions 

and perspectives are discussed in section IV. 

 

II. APPLICATION ERROR RATE PREDICTION METHOD 

The CEU (Code Emulated Upsets) methodology, presented 

for the first time in 2000 [9], is devoted to complex circuits 

such as processors and aims at determining a realistic 

prediction of the sensitivity of an application executed by the 

device under test (DUT). 

A. General methodology 

Let’s suppose that a method allowing injecting bit-flips 

randomly in both the occurrence instant and target can be 

implemented for the considered DUT. The cross-section 

derived from the static test strategy provides the average 

number of particles of a given type which is necessary to 

provoke a bit flip of one of the memory cells included in the 

DUT.  

If bit-blips are injected concurrently with the execution of a 

given program by software and/or hardware means, it can be 

derived an error rate, called tinj in the following, as the number 

of detected errors divided by the number of injected bit flips: 

 

 
 

As tinj can be interpreted as the average number of bit-flips 

needed to provoke an error in the executed program, the 

sensitivity to SEUs of the exercised program can be calculated 

by multiplying the underlying cross-section and the error rate 

issued from fault injection: 

 

 
 

This approach to estimate the error rate was proposed and 

validated for processors. The main difficulty resides in the 

implementation of the fault injection strategy which must 

emulate as close as possible real bit-flips affecting the 

processor memory resources as the consequence of an SEU. 

The accuracy of derived error rates, when compared to the 

ones measured under radiation, strongly depends on the 

number of memory elements included in the studied circuit 

which are not accessible by means of the instruction set. 

Recent experiments performed using this approach [10], 

showed that predictions are very close from measured error-

rates issued from radiation ground testing (heavy ion beams, 

protons) even for complex advanced processors, such as the 

Power PC 7448. 

B. Porting the methodology to SRAM-based FPGAs 

This methodology is very well suited for SRAM-based 

FPGAs as its two main limiting factors, the fault injection 

mechanism and the number of accessible bits through the 

instruction set, are not a concern. Indeed faults can be injected 

within the configuration bitstream (such a fault injection 

mechanism was presented in [11] and [12]), this does not 

require to modify the application. Moreover the whole 

configuration memory being accessible, any resource used by a 

design can thus be targeted. This particularity should improve 

the result accuracy of the methodology. 

In the following are presented experimental results putting 

in evidence that the error rate of applications implemented in 

SRAM-based FPGA can accurately predicted by combining 

measured static-cross section with data issued from HW/SW 

fault-injection experiments performed off-beam during the 

execution of the final application. 

 

III. EXPERIMENTAL RESULTS 

A. Testbed description 

The test platform used in this work was the THESIC+ 

platform [13] with a daughterboard hosting the DUT: a Xilinx 

Virtex-II XC2V1000 FPGA [14]. Figure 1 depicts the 

architecture of the developed system, whose architecture is 

built around two FPGAs. The first one, called COM FPGA, 

contains a LEON2 processor. It handles the communication 

between the user’s computer and the resources available on the 

THESIC’s motherboard. It also monitors the DUT current in 

order to protect it against latchups. Data transfers are 

performed over an Ethernet network allowing a good data rate. 

The 2
nd

 FPGA, called Chipset FPGA, contains the user design, 

mainly used to interface the DUT with the tester’s resources. 

 

Figure 1 : THESIC+ block diagram 

The FPGA application chosen for this study is based on a 

triple-DES (Data Encryption Standard) algorithm, also called 

DES3 [15]. The DES algorithm encrypts 64-bit data using a 

56-bit key in 16 clock cycles whereas the DES3 encryption is 

achieved by three consecutive DES encryptions. Thus it 

requires three 56-bit keys and 48 clock cycles. 

TMR architecture was implemented on the above described 

DES3 application. The current state of the TMR, the voter’s 

output, is stored in a register which can be read by THESIC+. 
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When the voter does not detect an error, a zero value is loaded 

in the register. Otherwise the read value corresponds to the 

TMR’s branch that produced results different from the ones of 

the two others replicas. 

Having the possibility to observe the output of each TMR’s 

branch would be a useful feature. However the experimental 

setup does not have the required number of inputs/outputs to 

implement that option. Thus a 3-bit register was added to the 

application in order to provide information on the behavior 

inside the chip. Register values are as follow: 

 “0”: all branches have the same value 

 “1”, “2” or “3”: is the number of the branch which provides 

a result different from the two others. 

 “4” : three different results 

 “5”, “6” and “7”: N.A. 

Moreover, the tester checks every result supplied by the 

TMR application in order to detect potential errors passing 

through the TMR comparator. This, combined with the content 

of the 3-bit register, allows distinguishing three types of errors: 

 Detected errors: the 3-bit register detects an error on one 

of the branches, but the TMR is efficient and the output 

result is correct. 

 Falsely detected errors: the 3-bit register reports a N.A. 

value and the application output is correct. 

 Undetected errors: the 3-bit register reports no error, 

however the supplied application output is false. 

 

 

B. Radiation ground testing 

Radiation ground testing was performed at the HIF (Heavy 

Ion Facility) cyclotron [16] of Louvain-la-Neuve (Belgium). 

Due to the allocated beam time, the studied TMR application 

was exposed only to two different particle species: Carbon and 

Argon. The test protocol is described in Figure 2. 

Table 1 summarizes the number of application errors 

observed during a radiation ground testing session. These 

errors are classified according to the three categories described 

in § III.A. 

Table 1 : Heavy ion accelerated test results 

Ions 
LET 

(MeV/mg/cm²) 

Detected 

errors 

Falsely 

detected 

errors 

Undetected 

errors 

Carbon 1.2 51 0 0 

Argon 10.1 1,278 3 35 

 

C. Fault injections 

Fault injection campaigns where performed according to the 

above described methodology. The fault injection protocol is 

depicted in Figure 3. The total application execution length is 

76 clock cycles. Faults are injected randomly during these 76 

cycles. 

In Table 2 are given results of a fault injection campaign in 

which the TMR application was executed 426,217 times. A 

fault was injected in each run at a random time and on a 

random target memory configuration bit. Thus, the average 

number of injected faults required to provoke each type of 

situation can be calculated by performing the ratio between 

number of observed faults and the total number of injected 

faults. 

Table 2: Fault injection results 

 
Detected 

errors 

Falsely 

detected 

errors 

Undetected 

errors 

Nb. of detected 

faults 
14,564 237 319 

Required average 

number of faults  
3.42x10-2 5.56x10-4 7.48x10-4 

 

 

D. Observation of the effect of faults on memory bits 

configuring static and dynamic resources 

Another concern was the impact of a permanent fault on the 

application. For example a fault can be injected after the 

resource is being used, thus not provoking an error on the 

application. However this error may still be present in the next 

application execution. This example takes place when the fault 

is injected on a memory cell configuring a static resource. On 

the other hand, a dynamic resource would be initialized upon 

application start, so a fault being injected before would not be 

harmful to the application. 

Run TEST 

DUT bitstream to 

THESIC+ 

Configure DUT 

Open shutter 

Close shutter 

Run application 

Output 

error? 

Store application 

outputs 

Store DUT 

Readback 

Results to 

computer 

Close shutter 

no 

yes 

Figure 2 : Heavy ion campaign flow diagram 
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In order to observe this phenomenon the application was run 

twice for each injected fault. The fault is injected during the 

first run, then, the second run is done without modifying the 

application. 326,328 faults were injected during this 

experiment. 

The first obtained results are presented in Table 3. They 

represent the number of injected faults that would produce an 

erroneous application result in one of the two runs or in both 

of them. The general observed tendency is that more errors are 

obtained during the second run than in the first run. This is a 

consequence of permanent faults on memory cells configuring 

static resources. Indeed a fault injected during the first run may 

not provoke an error during this run if the resource it 

configures is not used by the application during the remaining 

processing tasks. However the error will appear during the 

second run as the fault is still present in the configuration 

memory at very beginning of the execution. 

A reverse tendency is observed for falsely detected errors as 

fewer errors are recorded during the second run. A reason 

could be the type of logic resources used to make this function. 

Indeed this type of error appears only when the register takes 

an unexpected value. This could be the case of an SEU 

occurring on the register itself or on the signal routing inside 

the FPGA. So, the concerned resource’s type is mainly 

dynamic bits, thus the register value is reset when the second 

run starts and the injected fault is wiped out. 

 

Table 3 : Number of errors during first and second application’s runs  

 
Detected 

errors 

Falsely 

detected errors 

Undetected 

errors 

1st run 11,237 (3.44 %) 178 (0.05 %) 235 (0.07 %) 

2nd run  13,646 (4.18 %) 161 (0.05 %) 350 (0.11 %) 
 

 

Results presented in the following focus on the injected 

faults that produce different results in the two runs. The figures 

given in Table 4 differentiate three types of events: 

 The number of fault injections having no impact on the 

application output during the first run but generating an 

error in the second run. This is a typical case of a 

permanent fault occurring when the resource is not used 

anymore in the processing flow. However the fault is still 

present during the second run and it provokes an error on 

the application output. 

 The number of fault injections producing a visible error in 

the first run but not in the second. This is a temporary fault 

as it disappears whenever the application is reset. This type 

of fault affects bits configuring dynamic resources. 

 The number of fault injections affecting the result during 

the two application runs. This is another example of 

permanent faults where the error is present on the resource 

when it is critical for the application. 

Temporary faults are less frequent than their permanent 

counterparts. This is not really surprising as dynamic bits 

represent a minority among the whole resources used by the 

application. 

 

Table 4 : Errors when application results differs in the two runs 

 Number of output errors 

1st result correct, 2nd result false 2535 (0.77 %) 

1st result false, 2nd result correct 401 (0.12 %) 

Both results false 1890 (0.58 %) 
 

 

The impact of the injection time parameter is discussed in 

the following. Figure 4 presents the total number of errors 

versus the injection-fault time instant. The general tendency 

observed is an increase over the time. Indeed the later the fault 

is injected, the highest is the probability to provoke an error on 

the application output. 

Few errors are reported during the first 20 clock cycles as 

this period corresponds to the data and key loading in the 

design. The related amount of logical resources used is about 

5% of the total amount used by the entire application. Most of 

the errors occured between the 20th clock cycle and the end 

where the encrypting process takes places involving 94% of 

the resources. 

Run TEST 

DUT bitstream to 

THESIC+ 

Run application 

Resume 

application 

Results to 

computer 

Configure DUT 

with faulty 

bitstream 

Configure DUT 

Halt application 

Injection fault in 

bitstream 

Readback DUT 

Store application 

outputs 

Figure 3 : Fault injection flow diagram 
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Figure 4 : Number of fault injections provoking an error in at least one 

run vs. the clock cycle during which the fault is injected 

Details for each type of case enumerated in Table 4 are 

proposed in Figures [5-7]. Figure 5 summarizes the number of 

errors observed only during the first run versus the fault 

injection time. Those errors can be typically classified as 

temporary ones as they do not occur during the second run. 

Taking into account that the TMR weaknesses is the output 

comparator, direct hits on dynamic resources from the voter 

will most probably produce an undetected error. 

 

 

Figure 5 : Number of errors in the 1st run vs. instant of the fault 

injection when 2nd run is correct 

Figure 6 illustrates the number of errors provoked on the 

application output versus the clock cycle during which the 

fault is injected when the 1
st 

result is correct and the 2
nd

 result 

is false. In this case, most of the errors take place during the 

encrypting period. As a fault injected early in the application 

execution has a highest probability to have an impact during 

the first run of the application, this result is clearly 

understandable. 

Figure 7 depicts the results when both runs outputs false and 

different values. Only a few faults injected during the data 

loading period allowed observing this kind of behavior. This 

could be explained by the fact that logical resources are reused 

several times during the encryption process. Thus, a bit-flip 

corrupting the content of a static resource during this period 

will not produce a different result in the following runs during 

which the SEU is present from the beginning of the encryption. 

 

Figure 6 : Number of errors in the 1st run vs. instant of the fault injection 

when 2nd run is correct 

 

 

Figure 7 : Number of fault injections provoking different false results in 

both runs vs. the injection clock cycle 

Figure 8 provides the results when outputs are identical and 

false in both runs. The tendency is to observe more errors 

when the fault injection takes place early in the application 

execution. 

 

 

Figure 8 : Number of fault injections provoking identical false results in 

both runs vs. the injection clock cycle 

In summary, the error profile as a function of the fault 

injection time will vary according to the type of errors 

observed and the nature of the logical resources being 

corrupted. 
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Table 5 : Measured vs. predicted error rates for the TMR implemented in the studied FPGA 

Error rate Particles 
Detected 

errors 

Falsely detected 

errors 

Undetected 

errors 

Measured 
Carbon 1.04x10-4 N/A N/A 

Argon 2.84x10-3 6.67x10-6 7.56x10-5 

Predicted 
Carbon 9.53x10-5 1.55x10-6 2.09x10-6 

Argon 1.94x10-3 3.16x10-5 4.25x10-5 
 

 

E. Confrontation of measures and predicted results 

The Carbon and Argon fluencies during heavy ion radiation 

ground testing were respectively 492,000 and 450,000. Thus, 

the application/device measured error rate can be obtained 

from the ratio between the number of detected errors and the 

particle fluency. 

As described in §II.A the error rate of an application/device 

system can be predicted by multiplying the average number of 

faults required to provoke an error and the measured device 

SEU static cross-section. The measured static cross-section 

was 2.79x10
-3

 cm²/device for Carbon and 5.68x10
-2

 cm²/device 

for Argon. 

Owing that no events of interest (neither falsely detected 

errors, nor undetected errors) were observed for Carbon, only 

the predictions done for Argon can be confronted to measures. 

The analysis of these results, depicted in Table 5, shows that 

predictions are very close to measures: the maximum 

underestimation factor being less than 2. This difference might 

be the result of MBUs not being considered in the fault 

injection campaign. 

Falsely detected errors follow a reverse trend: the prediction 

overestimates the measure by a factor close to 5. This could be 

explained by the small number of errors of this type observed 

during radiation ground testing. It is important to note that in 

such a case, the prediction is certainly closer to the reality than 

the measure. 

IV. CONCLUSION 

A state-of-the-art approach devoted to predict the error rate 

of a processor executing an application was adapted to deal 

with applications implemented in SRAM-based FPGAs. 

Results obtained for a case study, a TMR version of a 

cryptocore implemented in a Virtex II FPGA, confirmed the 

validity of the adopted methodology. 

Future work will be focused on obtaining more results from 

radiation ground testing in order to confirm the observed 

trend.. The improvement of the fault injection methodology in 

order to allow a realistic simulation of MBUs, faults which 

challenge state-of-the-art fault tolerance techniques, will 

constitute one of the main goals of future researches in this 

area. 

Confronting these predictions and these measures to those 

expected from the same application running on-board 

LWS/Satellite is the ultimate goal of this work. The satellite 

launch is expected for October 2012. 
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